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Abstract:  “Bricolage”, a multidisciplinary term used extensively in visual arts, anthropology and 

cultural studies, refers to a creation that borrows elements from a diverse range of existing de-

signs. The term is applied here to describe CSALF-Q, a new automatic 2D quad meshing algo-

rithm that combines the strengths of recursive subdivision, loop-paving and transfinite interpola-

tion to generate surface meshes that are anisotropic yet boundary structured, robust yet sensitive 

to size fields and competitive in performance. This algorithm is based on the understanding of 

boundary loops which are initially meshed recursively with a new, boundary based “loop-paving” 

technique that balances anisotropy and mesh quality. The remaining interior domain is filled out 

by a symbiotic process that shuttles between recursive subdivision, transfinite interpolation and 

loop-paving in an efficient manner. The mesh is finally cleaned and smoothed. Loop-fronts are 

classified and rule sets are defined for each, to aid optimum point placement. Stencils used for 

loop-closure are presented. Results are presented that compare both local and global element 

quality of meshes generated by the new algorithm with that of TQM (TriaQua Mesher) which is 

also known to handle variegated sizemaps. 

Keywords:  subdivision, tri-qua mesher, paving, transfinite, mapped, flattening, loop, 

loop-paving, parameterization, quadrilateral. 

 

1 Introduction 

Unstructured quadrilateral and hex mesh generation of a large gamut of industrial 

problems ranging from automotive, aerospace, electronic and appliance structures and 

thermal and fluid flow problems continue to be a key pre-processing step leading to the 

complex analyses performed for design validation. In the industry today, we continue to 

faithfully use just a handful of quad mesh generation algorithms. Added to the existing 

complexity of engineering demands and interaction problems there is a need to create hy-

brid meshes that capture quintessential properties of several mesh generation algorithms, 

thus enabling the application engineer or analyst to produce meshes that largely meet 

both diverse local and global requirements.  This "hybridity", called for thus, is defined in 

two ways - first, a mix of elements (quad or hex-dominant meshes) and secondly 
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quad/hex or quad/hex-dominant meshes confronted with stringent needs of variegated lo-

cal and global size fields thus requiring challenging anisotropy. 

2. Past Research 

 Owen [1] and Frey and George [2] present detailed overviews on unstructured 

meshing algorithms both from  historical and practical perspectives. The basic work on 

unstructured mesh generation with quadrilaterals could be classified into the following: 

1. Transfinite methods 

2. Paving or Advancing front type methods 

3. Quadtree methods 

4. Subdivision or domain decomposition  methods 

5. Medial Axis methods 

6. Sphere/ball/circle packing methods 

 

This paper will only focus on paving, transfinite and subdivision algorithms. 

2.1 Advancing Front Methods  

The advancing front approach to domain triangulation was introduced by Marcum [3]. 

Ted Blacker and Stephenson [4] published their ground breaking work on a quadrilateral 

advancing front approach they called Paving. Paving and advancing front meshes guaran-

tee a boundary conforming mesh with a very high quality. However, they do not guaran-

tee a “controllable layered mesh". There may not exist a completely structured layer of 

elements around boundary loops - as a result properties of such layers cannot be user-

controlled. Staten et al extended the unstructured paving approach to 3D which they 

called "plastering" [5]. Earlier White and Kinney [6] had attempted to progress a single 

element row until collision occurs. Although an interesting approach, the method does 

not help to improve quad element quality and nor guarantee controllable structured layers 

of high quality quads near interior boundaries. With triangles however, Pirzadeh [7] pro-

vided an algorithm to advance the boundary layers in a controlled and structured manner. 

Peraire et. al [8] made another important contribution in this class of problems by laying 

down the essential 3D Euler equations for boundary layer advancement. Very recently, 

Moreno et al [9] reported an improvisation of the paving algorithm that creates conti-

nuous and homogeneous curved triangular and quadrilateral meshes directly on NURBS 

geometry. Another strong limitation of the paving algorithm is its inability to handle 

complex sizemaps not making it the obvious choice for highly anisotropic quadrilateral 

meshes. 

2.2 Subdivision Methods 

Subdivision algorithms dissect a given polygon into either a simultaneous set of con-

vex domains or a recursively split dynamic domain. The main idea here is to generate a 

best-split-line to subdivide the polygon into smaller areas that are pre-dominantly convex. 

The polygonal postulate that states that a convex polygon, when linearly truncated, leads 

to only convex domains, serves as the basis for this approach. Since convex polygon do-

main yields a dominant convex mesh, the mesh quality produced by these algorithms is 
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enviably high. It needs to be categorically pointed out that subdivision methods pre-

existed advancing-front types and some of these provided the first automatic method of 

discretizing areas for the purpose of finite element analyses. There are two basic ap-

proaches with subdivision - (i) recursive subdivision and (ii) simultaneous subdivision. 

Each one has its strength and limitations. Sluiter and Hansen [10] and Schoofs et al. [11] 

made pioneering contributions in this area of recursive subdivision. Sluiter’s work was 

later revisited and revised by many including Talbert and Parkinson [12], Sarrate and 

Huerta [13] and Cabello [14]. The strength of these algorithms lie in their robustness in 

handling complex shapes, constraints, sizemaps and efficiency. The meshes produced 

have reasonable good quality. Mezentsev et al [15] described a generic approach to un-

structured mesh generation on subdivision geometry. Berzin et al [16] developed in re-

cent years a subdivision technique based on Modified Butterfly interpolation scheme for 

triangular mesh generation. Barry Joe [17], in his public domain code GeomPack, pro-

poses a method to proceed from a simultaneous set of convex sub-domains. A similar 

methodology was proposed by Nowottny [18].   

3. CSALF-Q 

 Automotive and aerospace structural analysts from the engine and transmission 

areas have long voiced their need for layered boundary conforming meshes in generally 

unstructured domains. To be able to have suitable control on the parameters of these 

layered meshes is a key requirement. Another need has been transitioning meshes, well-

adapted to surface curvature and local constraints. User control, especially in the boun-

dary layers is also key to these analyses.  

In a 1962 essay titled “The Savage Mind” [19] legendary French anthropologist 

Claude Lévi-Strauss used the word bricolage to mean “make creative and resourceful use 

of whatever materials are at hand”. Since then, the term “bricolage” has been used 

extensively in a large range of disciplines including science, visual arts and engineering 

to suggest construction or creation of a work from a diverse range of existing designs or 

algortihms. In the present paper, a similar effort is made to create a new hybrid quadrila-

teral mesher in 2D that combines two mutually complimentary aspects of unstructured 

meshing. One of them is a recursive subdivision algorithm. The other is a new paving 

loop-front method. The original recursive subdivision algorithm TriQuaMesh,  reported 

more than three decades back by Sluiter and Hansen [10] emphasizes on a recursive con-

tour or loop-splitting algorithm that produces reasonably good quality quad meshes in an 

automatic mode. An industrial version of the algorithm has been improvised in the I-

DEAS and NX softwares. The algorithm has had more than a quarter-century long indus-

trial mileage and is well known as one of the most general purpose and robust surface 

meshing codes in the industry. However, this technique does not create boundary-

structured quad meshes like paving. Paving, on the other hand,  does not adapt to large 

size transitions very effectively and is known to be susceptible to the presence of a large 

number of interior point constraints – a dire necessity for body-in-white meshing in the 

car industry. In this paper, the traditional paving technique of Blacker and Stephenson [4] 

is improvised to create an advancing loop-paving-loop algorithm that is coupled to the 

modified recursive subdivision technique. This results in CSALF (Combined Subdivision 

And Loop-Front) mesher. A triangular version of the same algorithm has been recently 

reported elsewhere [20]. It is a bricolage mesher that can produce anisotropic unstruc-

tured meshes that are predominantly boundary structured. The user can optionally control 
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layer advancement in terms of number and thickness. The mesh, however,  has an overall 

unstructured nature and elegantly adapts to sharply varying size fields and can honor any 

number of valid interior point constraints. 

Given a precisely discretized (isotropic or anisotropic) polygonal boundary, 

representing the area to be meshed, the proposed hybrid mesher algorithm initiates the 

meshing process with an advancing loop front method. The initial goal is to generate 

high-quality boundary conforming layered meshes. As the layer penetrates into the mesh 

area, new loops are created each time, reducing the mesh area. As the new loops begin 

overlapping, the advancing loop front algorithm is terminated and the subdivision algo-

rithm is activated as shown in Fig. 1. 

 At this point, all loops are connected into a single  continuous contour following pro-

cedures described by Cabello [14]. All interior point constraints are treated as a single-

point loop. Next, the contour is split recursively by determining a best-splitting line. The 

splitting line dissects the compound contour into a left sub-contour and a right sub-

contour (Fig 4.) Each left sub-contour is now recursively split into two children sub-

contours - one on the right and a another one on the left. The split lines are so chosen that 

they make angles nearing 90 degrees with the contour boundaries. 

Recursive splitting finally fills out the mesh area.  
 

The overall algorithmic logic can be expressed in two phases represented by the follow-

ing twin-algorithms – 
 

ALGORITHM I : Generating a single continuous contour-loop 
 

1. The 3D facetted surface is first flattened into a 2D domain following domain genera-

tion procedures as discussed recently by Beatty and myself [21].  

2. Face-interior features like holes, scars (loops with repeated edges) and convex-

shaped inner loops are identified. 

3. A local and global size-map is developed over the 2D domain. Number of paving 

layers around inner loops are determined based on feature recognition, proximity to 

other boundaries, global size-map and local user-driven size criteria.  

4. Nodes are generated on the boundary of the face accordingly and a triangular back-

ground mesh (based on the TQM algorithm, [15] ) is created for size-sampling.  

5. A mesh area is defined in a 2D domain with N meshed loops 

6. The N meshed loops represent the area boundary and are unique and non-intersecting 

7. While loops are non-intersecting and number of layers defined on various loops are 

not exhausted 

      { 7a. Cycle all N loops, inner loops first, the outer 

              loop last 

            { 

               7aa. Activate the loop-paving-front 

                      algorithm on the i-th loop 

               7ab. Check if the new loop self-intersects. If 

                       it does, turn off the loop-paver 

                       for this loop and go to 7ac. 

               7ac. Continue the cycle, go to the next loop 

             }          

      } 

8. Connect all N loops into a continuous contour C 
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ALGORITHM  II : The Symbiotic Triad 
 

To fill the single continuous contour-loop C with a quad or quad-dominant mesh, three 

meshing algorithms are used in tandem in a symbiotic manner - Recursive Subdivision, 

Transfinite Interpolation and Loop-Paving following a stratagem described by the flow-

chart in Fig.1. As soon as the contourloop is split, it results in two child contourloops - a 

left loop CL and a right loop CR.  

 

If the left contourloop CL is convex, meets the sizemap limitations (as explained 

in section 7) and is map-meshable, the transfinite mesher is called. Otherwise it is loop-

paved, provided all apriori  and posteriori checks pass. The new loop produced by loop-

paving, or the unaffected original loop is returned to the recursive subdivider. This sym-

biotic handling of the loops continues between the three meshing algorithms until there is 

no right loop and the left loop is completely filled. The right loop is now split into two 

loops again and the process is repeated until the complete mesh-area is filled out. Some 

regions of the 2D mesh generated is topologically cleaned by a mesh cleaner [22] and 

smoothed using a variational smoother [23]. 

4. Paving Loop-Front 

The paving loop front approach differs from traditional advancing fronts in the sense that 

a series of “loop fronts” are considered for mesh advancement. When all loop fronts of a 

loop are advanced successfully, a new loop results that imitates and preserves the profile 

of the starting loop. This results in a perfectly layered mesh near inner and outer bounda-

ries of the mesh area – a feature which is often preferred by structural and computational 

fluid dynamics analysts. Each loop front as shown in Fig 2., consists of a real segment 

BC and a virtual segment AB (represented by the previous element edge on the loop). 

The virtual segment represents a trailing edge of the real segment of the previous loop-

front. 

The virtual segment helps pave the loop front. The angle , between the real and vir-

tual segments of the loop front is used to characterize the loop front. Table I lists the var-

ious loop fronts supported by the algorithm. Q denotes the new node that is created up-

stream of the loop-front, P denotes the  node downstream of the loop-front that mostly 

pre-exists (created in certain special cases). All additional new nodes R, S,T and U are 

created between P and Q. 

4.1 New Node Placement 

When a paving loop-front is advanced, the new or optimal node placement depends on the type 

of the loop-front. For an flat paving loop-front, the position of  the only new node Q can be ex-

pressed as 

rQ = rB + Vt.g     (1) 

where rB is the position vector of node B, Vt is the bisector of angle ABC and grading g is as-

sumed to be the harmonic mean of the sizes at the nodes defining the loop-front. 

g = 3gAgBgC/sin(θ/2)(gAgB + gBgC  + gCgA)    (2) 

gA, gB, gC are the grading values at nodes A,B & C. 
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Fig. 1. Flowchart of Symbiotic Triad Algorithm for meshing continuous contourloop C 

 
 

 
 
Fig. 2. A typical paving loop-front 
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Table I shows the formulas for positioning the new nodes during loop-paving. For a Right-

Reversal paving loop-front, 3 new nodes (Q,R&S) are created. The angle bisector unit vector is 

transformed by ±  θ/6 to obtain the translational unit vectors for nodes Q and R. For all nodes that 

are diagonally opposite to node B, the grading is multiplied by a factor of √2 to account for or-

thogonality. In a similar manner for a Reversal paving loop-front 5 nodes (Q,R,S,T,U) are 

created. The angle bisector unit vector is transformed by ±  θ/4 and ±  θ/8 to obtain the transla-

tional unit vectors for nodes Q,R and U,S respectively. Each new node  is tested for proximity 

with its immediate neighbors in an attempt to avoid creating nearly-squished or hourglass-shaped 

quads. When such situations arise decision is taken either to merge proximate nodes or complete-

ly reject the loop for paving. 

4.2 Loop closure 

Loop closing is a delicate affair. Exceptions need to be made to the forward creation theorems (as 

illustrated and explained in Table I) for the various paving loop-fronts in this case. Table II lists 

the stencils used for each-pair of loop-front types. The terminal loop front is represented by XAB 

while the first loop-front is ABC. All nodes marked P'',Q'', R'' etc. refer to the original nodes 

created during the advancement of the first front. Nodes P,Q,R,T etc. denote the last loop-fronts 

new advancing node positions created at the time of loop closure. To close the loop, 1,2 or 3 ter-

minal elements need to be created based on the pairing type. 

 

After each paving-loop is advanced or paved, the elements and nodes generated in the process are 

smoothed using an isoparametric smoother as described by Blacker and Stephenson [4] with a 

minor difference in that it is applied to a closed loop of elements and node rings and thus the Di-

richlet and Neumann boundary conditions are placed accordingly.  

4.3 Loop Front Evaluators 

Loop closing is a delicate affair. Exceptions need to be made to the forward creation theorems (as 

illustrated and explained in the Appendix (Table I) for the various loop-fronts in this case. Table 

II lists the various stencils used for each-pair of loop-front types. The terminal loop front is 

represented by ABC while the first loop-front is BCE. Pt D represents  the first new advancing 

point of the loop.  Pt Q denotes the last new advancing point which, at the time of loop closure, 

has already been created. To close the loop, 1 or 2 terminal elements need to be created based on 

the pairing type.  

 

Before and after a loop is paved a number of checks are performed, each one for a different pur-

pose. These checks are explained below 

 

4.3.1 Loop Area Shrinkage - With every successful loop-paving, the loop area 

shrinks. This check is a posteriori check that is performed on the paved loop to en-

sure the ratio of the loop areas of the new and original loops (An, Ao) do not shrink 

below an  area tolerance (εA) - 
 

An/Ao > εA    (3) 
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4.3.2 Loop Perimeter Growth/Shrinkage - The loop perimeter can grow and shrink 

as the loop advances. This check is also posteriori and compares the ratio of the pe-

rimeters of the new and original loops (Pn, Po) against a perimeter tolerance (εP) as 

described by eqn. (4). 
 

|Pn/Po | > εP    (4) 
 

4.3.3 Loop Length Variation: Since paving is more heuristic than recursive subdivi-

sion, the mesh pattern and number of elements tend to vary overtly for small varia-

tions of the global size [24]. Also, in traditional paving wedging and tucking are per-

formed [4] to prevent fronts from shrinking and expanding beyond size limits. With 

wedges and tucks, paved meshes often produce diamond shaped quads in the middle 

of isotonic flowlines. Certain types of analyses, especially crash analysis (of ve-

hicles), are sensitive to that topology [25]. Therefore, a check is performed apriori 

where the rate of variation (dL/ds) of loop lengths (L) along its boundary (s)  is kept  

below a certain limit (εS).  
 

|dL/ds|  < εS    (5) 
 

 

4.3.4 Loop-Front Relative Growth Rate - This posteriori check ensures that the ratio 

of the extremums (|dL/ds|max, |dL/ds|min) of the loop-front differential growth rates 

are within a specified limit (εG). Any irregular and abrupt loop-front size changes are 

avoided during paving so as to ensure that the paved mesh layers are good quality 

and regular. 
 

|dL/ds|max/ |dL/ds|min < εG  (6) 

 

5. Recursive Subdivision 

The recursive subdivision algorithm consists of the following steps- 

1. join all loops into a single continuous loop 

2. recursively split the continuous loop by a best-split-line 

3. determine the best split line 

4. estimate the number of nodes to be generated on the split line 

5. space the nodes on the split line  

6. if no more nodes can be generated construct elements if loop has 3 or 4 nodes only 

7. goto step 3 and continue until mesh is done 

5.1 Connecting loops 

In order to connect all loops to a single continuous loop, a cartesian grid of the global element 

size is constructed in the background. Given a mesh area with n loops, these cells are used to 

identify a pair of nodes representing the shortest distance between outer loop lo and any inner 

loop li along a line whose optimum angular deviation φ (discussed in sect. 5.2) is minimum . The 

connecting line is checked for intersection with any other loops. Once this connection is made the 

problem now is reduced to one connecting n-1 loops. The process is repeated until it a single con-

tinuous loop results.  

5.2 Recursion algorithm 
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The recursive subdivision algorithm takes a single 2D contourloop defined by a sequence of nodes and 

recursively splits it to fill the region. The input contourloop must not be self-intersecting nor have coinci-

dent nodes but can be self-touching. Nodes can also have repeated entry in the loop. The subdivision logic 

is described by the following flow-logic 

 

ALGORITHM  III : The recursive subdivision logic 
 

While the compound contour is not completely filled (refer Fig. 3b) 

 {     1a. Get the best splitting line A that makes an 

            angle close to 90 degree with the contour.    

            The splitting line divides the contour into  

             a sub-contour on the left (CL ) and one on  

             the right(CR). 

        1b. while the left sub-contour CL  is unfilled 

            { 

                Repeat step 1a 

             } 

       1c. while the right sub-contour CR stays unfilled 

           { 

               Repeat step 1a 

           } 

      } 

5.3 Selecting the best split line 

The split line functional Φ for a split line joining boundary nodes j and k, is expressed as a li-

near combination of normalized parameters, L, φ and ε ( where A1, A2, A3 are constants ).  

Φ = A1 L + A2 φ + A3 ε   (7) 
 

The normalized length parameter L is given by L = ljk/ld; ljk is the length of the split line jk (as 

shown in Fig. 3b), ld is the characteristic length, which is the diagonal of the rectangular box 

bounding the mesh area B ≡ [(xmin,ymin) , (xmax, ymax)] and given by 
 

ld
2
 = (xmax – xmin)

2
 + (ymax – ymin)

2
  (8) 

 

The normalized split angle φ  is expressed as the normalized sum of the deviations of the 4 

split angles (shown in Fig. 3b) from the ideal quadrilateral angle π/2. 

              4  

            ∑   | φi – π/2 | 

 φ =     
i=1

_________    (9) 

                      2π 

The percentage of length error ε resulting from fitting n nodes on the split line based on the 

grading values of sample points is discussed elsewhere [14] in details.   

 

The minimum value of the split line functional gives the best split line. However, many of the 

split line candidates in a concave loop are invalid as they fall outside the domain (as shown in 

Fig. 3a).  A boundary visibility criterion is set up to eliminate these invalid candidates. 
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Fig. 3a. An invalid split line JK joining nodes j and k of the single continuous loop.  

 

Based on experience with a large range of mesh areas, a range for the constants  (A1 , A2 , A3 ) 

are heuristically determined [14]. 

 
Fig. 3b. A valid split line joining nodes j and k. 

5.4 Split line discretization 

Split line discretization is extremely critical to the ability of the mesh to adapt to a given size 

field. The first step is to determine the number of nodes n, to be generated on a split line. A set of 

s sample points is first created on the split line with an uniform spacing. s is calculated as 

 

s = ljk(gj + gk)/2gjgk – 1   (10) 

 

The grading values (gi) at these s sample points are determined from eqn. (11). The grading 

distribution along the split line is assumed to be an s+2-polynomial variation of the natural line 

coordinate ξ expressed as 

 

gi(ξ) = 1+C1ξi+C2ξi
2
+C3ξi

3
+....Cs+2ξi

s+2
    (11) 

 

Substituting the grading values at these s+2 interior sample points, the simultaneous equation family (11) 

is solved to determine the coefficients C1,C2,...Cs+2.   

 

For computational efficiency, the grading function could be  limited to a quintic order, i.e. s < 4. 
 

g1 = 1+C1ξ1+C2ξ1
2
+C3ξ1

3
+....Cs+2ξ1

s+2 
     

g2 = 1+C1ξ2+C2ξ2
2
+C3ξ2

3
+....Cs+2ξ2

s+2 
    

.............................................................. 

gs+2 = 1+C1ξs+2+C2ξs+2
2
+C3ξs+2

3
+....Csξs+2

s+2 
    (12) 

 

The number of nodes n to be generated on the split line jk is estimated as  

                                1 

n = ljk/gl where gl = ∫ ξ=0 gξ dξ   (13) 
 

φ2 
  φ1 

 φ 3 
φ 4 

j 

 

k 

 CL 

 CR 

split 

line JK 

Valid 

split 

line jk 
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In the natural or parametric coordinates of the split line these n nodes will be equally spaced. The loca-

tion of the i-th node on the split line can be expressed in terms of its grading value gi, coordinates of the  

previous point p on the same line, and the coordinates of the two end nodes j and k. The following pair of 

equations need to be solved to evaluate the location of node i. The split line functional Φ for a split line 

joining boundary nodes j and k, is expressed as a linear combination of normalized parameters, L, φ and 

ε.  
 

xi
2
(1+m

2
)+2xi[xp + m(c-yp)]+xp

2
+(c-yp)

2
+gi

2
 = 0  (14) 

 

and the equation of the split line 

yi = mxi + c      (15) 
 

where the slope of the split line is  

m = (yk-yj)/(xk-xj)  and    (16) 

c = (xkyj-xjyk)/(xk-xj)     (17) 

6. Transfinite Interpolation 

 Transfinite interpolation (extensively discussed by Armstrong and Tam [26], Mitchell [27,28]) 

and more recently [25]) is optionally employed in convex sub-contour loops only if the size-map variation 

within its domain is small. The advantage of TFIs is two fold - a) firstly it is fast and efficient and b) it is 

insensitive to small local variations in the size-map and is guaranteed to generate a structured quad mesh 

which neither loop-paving nor recursive subdivision can promise.  

7. Local and Global Anisotropy 

The detailed operation of the symbiotic triad explained in Fig. 1 depends on the driving size-map func-

tion defined by the  local and global anisotropy requirement. Local anisotropy applies to all face-interior 

boundaries or constraints and is defined by two parameters - a) Number of layers desired (nl); and b) A 

layer thickness function L(n). Figures 4(a)-(b) depict the meshes around a hole for three different sizing 

functions (number of layer desired nl = 5). Many applications, especially structural mechanics, require 

boundary-structured graded local meshes and even if the aspect ratio is higher than usual, two rings of 

well-shaped quads (Jr < 1.2) minimizes stress solution and smoothening errors. The Fibonacci function 

[Li = 1,1,2,3,5; i =0-4;]  thus assumes importance. The ramp function, however, is more popular for its 

simplicity. 

Global anisotropy applies to the entire surface except for interior boundaries with local anisotropic de-

finitions and is defined by a sizing function. The size or grading of the mesh at any interior node is eva-

luated from the size field represented by the background mesh as 

g = Г(x,y)      (18) 

 

To evaluate the grading at any interior point i (x,y), it’s owner triangle j in the background mesh is identi-

fied by a space hashing mechanism. The grading at point i is thus expressed in terms of the field values at 

the vertices of triangle j as  

                 3 

gi (x,y) = ∑k=1 Nk gjk  (x,y)    (19) 

 

gjk  (x,y) denote the grading at the vertices of triangle j 

Nk represent the shape functions of triangle j 
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As the mesher fills out the surface, for the unmeshed area U with Ns sampling points, an Extremum 

Size Gradient (grU ) is constantly computed as the ratio of the maximum to the minimum grading aver-

aged over the unmeshed area. It can expressed as -  
 

grU  = ( ∫U  (gmax (x,y)/gmin (x,y)) du)/Ns  (20) 
 

For all ESG > 1.2, transfinite interpolation is never attempted on sub-contour loops as it might render 

the mesh insensitive to the varying size field. 
 

Fig.4  Local and global anisotropy near a hole for various local sizing functions  
(a). Local anisotropy as  ramp function                              (b). Local anisotropy as a parabolic function 
 

                                          
 

8. Mesh Quality 

      Mesh quality is measured in both local and global domains. It is defined as the harmonic mean of the 

ratio of the extremum Jacobian's (Jr) and can be expressed, for a mesh of N elements as  

                      N 
τ = N/ (∑i=1 1.0/(Jri  ) )   (21)  

 

where Jri = Jimax/Jimin is the Jacobian ratio of the i-th element 
 

It is measured both in the local paved layers (τl) and the entire mesh (τg). Both are used to compare mesh-

es generated by the proposed algorithm with that generated by recursive subdivision [14].   

9. Results & Discussion 

Fig. 5   shows a typical example of a curved face with a central circular cut-out. The analysis demands a 

tenth of the global element size at the inner loop than the outer. Fig. 5a shows the TQM (recursive subdi-

vision mesh) while Fig. 5b shows the mesh generated by CSALF-Q. While the TQM mesh adapts well to 

the acutely varying sizemap between the inner loop and the outer, element quality suffers immensely, es-

pecially near the inner boundary - the zone of analytical interest. Neither is the mesh along the outer 

boundary structured. The local mesh quality τl  over a region defined by a circle with radius 1.5r (r = ra-

dius of the inner loop) is 0.7 while the global mesh quality τg is 0.78. The CSALF-Q mesh grows the pa-

ved ring around the inner loop gradually trying to compromise between the local sizemap gradient and the 

mesh quality desired. In comparison to TQM it reports admirably high local and global mesh qualities (τl 

= 0.98, τg = 0.83) and one layer of boundary structured elements along the outer loop. The insensitivity of 
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loop-paving to the local sizemap allows for a good number of boundary structured inner layers followed 

by a smoother transition leading to an overall enhancement of mesh quality while honoring the sizemaps 

with reasonable accuracy. For the TQM mesh, the worst quad angle (163
0
) is on the inner boundary while 

in the CSALF-Q mesh the worst quad (152 
o
) is in between the boundaries in the zone of low importance. 

 

       
                       (a) Recursive subdivision (TQM)                                 (b) CSALF-Q 

  
Fig. 5     Mesh anisotropy on a curved face with a central hole.  

 

Fig. 6 shows a swept hex mesh on a body with 4 rectangular slots where the wall faces are frozen with a 

very fine transfinite mesh build to expedite a local contact analysis. As a result, the source face of the 

body, although absolutely planar, gets a widely varying sizemap. Fig. 7 & 8 depict meshes on a highly 

curved face for TQM and CSALF-Q respectively. While the TQM and CSALF-Q meshes are close, one 

can easily notice a more boundary structured mesh and a smoother transition quad mesh [ τg = 0.79 

(CSALF-Q),   τg = 0.68 (TQM)] resulting in relatively better quality mesh for CSALF-Q.

 

 
 

 

 

 

 

 

 

 
Fig. 6  Mesh anisotropy on the source face of a 

swept volume resulting from certain wall fac-

es frozen with a finer transfinite mesh
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Fig. 7  Anisotropic quad mesh generated by TQM [recursive subdivision, [10,14] ] alone. 

 

 
Fig. 8  Anisotropic quad mesh generated by CSALF-Q. 
 

10. Conclusion 

Paving is known to produce boundary structured quad meshes of admirable quality but fares 

poorly when challenged by a variegating global sizemap. Recursive subdivision, on the contrary, 

handles such size variations with elegance and robustness but produces relatively poor quality 

meshes that are rarely boundary-structured. In this paper, by adopting a bricolage technique the 

contrasting strengths of paving and recursive subdivision are fused and used in conjunction with 

subarea transfinite meshing to produce CSALF-Q - a new automatic 2D quad meshing algorithm 

that maintains element quality but is sensitive to both local and global sizemaps. To enable the 

bricolage algorithm to produce anisotropic yet high-quality boundary structured meshes, the loops 

are initially meshed recursively with a new “loop-paving” technique. The remaining interior do-

main is filled out by a symbiotic triad combining recursive subdivision, transfinite interpolation 

and loop-paving in a balanced and efficient manner. Loop-fronts are classified and rule sets are 

defined for each, to aid optimum point placement. Stencils used for loop-closure are presented. 

Results presented compare both local and global element quality of meshes generated by the new 

algorithm with that of TQM. They clearly indicate that apart from offering user control on the 

number and thickness of paved layers, CSALF-Q tends to generate meshes that are more boun-

dary structured and smoothens out the quad mesh transition in a manner that strikes a good com-

promise between quad mesh quality and anisotropy.   
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Appendix 

Table I:  Paving Loop Front Models and Front Advancement Rules 

 

Paving Loop front Type No. of new nodes New Elements 

   Acute Loop Front 

 

 

None 

 

None 

    Right/Obtuse Loop Front 

 

Pt P or Q if this is the first front. 

Else, none. Node P comes from 

the previous front, Q is same as 

P. The obtuse loop-front is diffe-

rentiated from right, because 

sometimes based on quality crite-

ria, the obtuse front may be 

treated  as a flat-front. 

□PABC   
  or 

□QABC   
 

If element is created, next 

front must be skipped.  

      Flat Loop Front 

 
 

1 Node Q 
Position vector of pt Q  

rQ = rB + TgQ 

T = unit bisector vector  of angle 

θ 

Grading at Q  

gQ = 3gAgBgC / sin(θ /2) (gAgB + 

gBgC + gCgA)  

□QPAB 

     Right Reversal Loop Front 

 

3-Nodes, Q, R & S 
rQ = rB + TQgQ    rR = rB + TgR  
             rS = rB + TSgS 

T= unit bisector vector of angle θ 

TQ = T transformed by (-θ/6) 

TR = T transformed by (θ/6) 

gQ= gR= 3gAgBgC / sin(θ /3) 

(gAgB + gBgC + gCgA) 

gS = 3√2gAgBgC / sin(θ /3) (gAgB 

+ gBgC + gCgA) 

□BRPA 

□QSRB 

   Reversal Loop Front 

 

5- Nodes, Q, R, S, T & U 
rQ = rB + TQgQ    rR = rB + TRgR  
rS = rB + TgS      rT = rB + TTgT 

rU = rB + TUgU  

T = bisector vector  of angle θ 

TQ = T transformed by (-θ/4) 

TU = T transformed by (-θ/8) 

TS = T transformed by (θ/8) 

TR = T transformed by (θ/4) 

gQ = gT = gR= 3gAgBgC / sin(θ /4) 

(gAgB + gBgC + gCgA)  

gS = gU = 3√2gAgBgC / sin(θ /4) 

(gAgB + gBgC + gCgA) 

□ABRP 

□BTSR 

□BQUT 
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Table II:  Paving Loop Front Closure Stencils 

First Paving Front  

(ABC) 

Last Paving Front 

(XAB) 

Elements to create Description 

Acute/Obtuse/Right Acute None Not applicable 

 Obtuse/Right □ XYAC 

 

Node Q'' is replaced by 

paving front node X  

                  
 Flat □ PXAQ □ Q''ABC changes 

to QABC 

Node Q'' of the first loop-

front is merged with Q of 

the last front. 

 
 Right Reversal □s PXAR, SRAQ 

□ Q''ABC changes to QABC 

 

Pt Q'' of the first loop-front 

is merged with Q of the last 

front. 

 
 Reversal □s PBAR, TSRA, UTAQ 

□ Q''ABC changes to QABC 

 

Node Q''  ≡ Node Q 

(merged) 

         
 

Flat Acute/Obtuse/Right □ XABQ 

 

 

 
 Flat □s Q''QAB 

 

 

       
 

 Right Reversal □s PXAR, AQSR, Q''QAB 

 

Node Q ≡ Node P'' (merged) 

 
 Reversal  Similar to previous 
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Right Reversal Acute/Obtuse/Right □ R''P''AB is changed to 

R''XAB 

 

Node P'' is replaced by Node 

X 

 
 Flat □QPXA  

□R''P''AB 

is changed to R”QAB 

as 

 

Node Q ≡ Node P'' (merged) 

 
 Right Reversal □sRPXA, SRAQ  

□R''P''AB 

is changed to R''QAB 

as 

 

Node P'' ≡ Node Q (merged)  

 
 Reversal □sRPXA,TSRA,UTAQ  

□R''P''AB 

is changed to R''QAB 

as 

 

Node P'' ≡ Node Q (merged) 

 
Reversal Acute/Obtuse/Right  

□R''P''AB 

is changed to R''XAB 

as 

 

Node P'' is replaced by Node 

X 

 
 Flat □sQPXA, R''QAB 

□R''P''AB 

is changed to R''QAB 

as 

 

Node P'' ≡ Node Q (merged) 

 
 Right Reversal None Not Applicable 

 Reversal None Not Applicable 
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